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Abstract. A novel control force is presented to stabilize the inverted pendulum
moun!ed on a cart. The control force is based on proposing a partial feedback
lincarization, in conjunction with Lyapunov's sccond method. This simple, but
cfficient strategy guarantees that the closed-loop system is locally asymptoti-
cally stable around the unstable equilibrium point. Additionally, the controller
has a very large attraction domain and it is robust with respect to damping .
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1 Introduction

The study of the simple inverted pendulum cart system has been one of the most inter-
esting problems in classical mechanics and modern control theory. The device consists
of a pole whose pivot point is mounted on a cart. The pendulum is free to rotate about
its pivot point. The cart can move horizontally perpendicular to the axis's pendulum
and is actuated by a horizontal force. The mechanical problem is to bring the pendu-
lum from large initial pendulum deviation to the upper unstable equilibrium position
by moving the cart on the horizontal plane. This system has attracted the attention of
many researchers, as seen by a growing list of articles (for example, see [1], [2]), (3],
(4, [5], [6] and [7]). The interest is due to the fact that, the device is non-feedback
linearizable by means of dynamics state feedback (see (8]), and hence, it is not li-
nearizable by means of dynamic state feedback control either. This obstacle makes it
especially difficult to perform some controlled maneuvers; for instance, there is no
continuous force which globally stabilizes the upright equilibrium of the pendulum
with zero displacement of the cart [9]. Nevertheless, the problem can be solved pro-
ducing at least one discontinuity in the acceleration cart. However, it is well-known
how to construct a linear locally stabilizing controller [10] but, the linear based con-
trols design presents the inconvenience of having a very small domain of attraction.
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nt a control force to locally asymptotically stabilize the in-

In this article, we prese dsyn _
uilibrium point' , for a very large

verted pendulum cart system around its unstable eq

attraction domain.
Also. intuitively the proposed control force allows us to transfer the pendulum from

the stable equilibrium point to the unstable equilibrium .points, -which are the lower
and the upper resting angular position, respectively. ThIS. task is done by means of
switching a suitable parameter. The system stability is demonstrated by using
Lyapunov's second method. . .

This paper is organized as follows. Section | introduces the normalized non-l,ncar
model of mechanical device. Next, a partial feedback linearization of the non-linear
equations is obtained. Section 2 presents a non-linear controller for the stabilization of
the device, and some computer simulation results depicting the performance of the

closed-loop system are presented. Finally, Section 3 gives the conclusions.
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Fig. 1. The inverted pendulum cart system

2 The Inverted Pendulum Cart System

Consider the traditional inverted pendulum mounted on a cart (see Figure 1). The
nonlinear model of the system, which can be obtained from either the Newton or the
Euler-Lagrage equations, see more detail ( Lozano and Fantoni ) is given by

mLcosO % +ml’0 — gmLsin® =0
(M+m)c+ Lmcos08 —mLO*sin® = f

where X is the cart displacement, O is the angle that the pendulum forms with the
vertical, fis the force applied to the cart, acting as the control input. M and

' Which is the upper angular position with zero displacement of the cart
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m stand for the cart mass and the pendulum mass concentrated in the bob, L is the
length of the pendulum.

To s}l)mphfy the algebraic manipulation in the forthcoming developments, we normal-
ize the above equations by introducing the following scaling transformations,

g=x/L, u=f[ (mg), dc =drfg/L , & =M|m

This normalization leads to the simpler system,

cosO §+6 —sin® =0
(1+8)j +cos08 —02sind =u,

wherg, Wit}.l an abuse of notation “.” stands for differentiation with respect to
Fhe dn.nensmnless time T . Then, a convenient partial feedback linearization
input is proposed as follow (see Spong),

u = cos0 sin® —6 2sind + v@inze +8 )
which produces the feedback equivalent system:

6 =sind —cosOv, (1)

G=v

Notice that for the new input v=0 and 6[0,21:] the aforementioned system has
two equilibrium points one is an unstable equilibrium point 0.6.4.9)=(0.0.0,0) and the
other is a stable equilibrium point 6,9' ,q,q)= (x,0,0,0). The issue is to stabilize the

system around its unstable equilibrium point, i.e., we wish to bring the pendulum to its
upper position and the cart displacement to zero simultaneously.

3 A Practical control law

Traditionally, the problem of designing a stabilizable input conErol I.aw for’syslem (D
is based on the well known Lyapunov method. Roughly speaking, it consists of pro-
posing a positive definite function (or Lyapunov function) PFOVide‘_j that, its time de-
rivative along the trajectories of system (1) be at least semi-definite. The very hard
problem is how to find the Lyapunov Junction. We relax the problem by setting off a
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semi-definite instead of a positive definite function, and then the asymptotic stability
is assured by a simple linearization of the closed loop-system.
Let us first introduce the following auxiliary variable:

£ (x)=sinB +k,8 +k 0 + Q(pq-l- kdc}):ose +oqg (2)

Where X is the vector state defined as x = E,é ,q,(}]' .The design parameters k,, ; k‘,

and o are positive constants that will be selected later.

Next, let us introduce the following semi-definite function,

()=257C) ?

The time derivative of V() along the trajectories of the system (1) is then given, by
V(x)=¢ ()Q)+av)

where

Q(x)=k, sind + (k, +cosb ~k, sin® Y +, cosb — &, sin6g )j @

proposing Vv provided that

Q(x)+av=-Kk (x)

Clearly, we have.

v=- (K5 G+ Q) ~

Comment: The differential equations set formed when by system (1) and the feedback
force v given in (5), is referred to as the non-linear closed-loop system.

Surprisingly, the proposed control law v turned out to be able to asymptotically stabi-
lize the system (1) around the unstable equilibrium point x =0, for a large attraction
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domain?. D < R*. Where the control parameters {K;, Kp, K d,a} are selected such

that the linearization of the closed-loop system around of x = 0 is Hurwitz, as we will
show in the following proposition, which summarizes the previous discussion as:

Proposition: The nonlinear closed-loop system is locally asymptotically exponentially
stable to a desired equilibrium point x =0 if the design parameters K;,k,.k, and

a are chosen so that the following polinomial in the complex variable s is Hurwitz:

o KK (6)
p(s) =s* -+-(Ki——]-}r3-(I+JL"+£<i)s2 —(KHMM-& "}s- L
a a a a a a

Proof:

The Jacobian linearization of the closed-loop system (see (1) and (5)) around the
desired equilibrium point x =0, is given by: X = Ax, where

0 ! 0
k,+K(Q+k,) 1+k,K +K, KK, @+K)K ~k

PG Sl ke O S i D
0 0 0 1
k,+K(+K,) -1-K,K,-K, k, —@+k,)K, -k,
L a o a a

-

computing the characteristic polynomial of matrix 4, we have the expression (6).
Hence, selecting the design parameters such that -p (s ) is Hurwitz, we guarantee that

the closed-loop system be at least locally asymptotically exponentially stable.

Note that if the parameters K; k pand k, are positive, it is nccessary that « be nega-

tive

Remark: Eventually, we will try to rigorously make the estimation of the attraction
domain D by means of Lyapunov functions in conjunction with La Salles's Theorem.

It is worth mentioning that an efficient estimation of the set D is a difficult problem. It
turns out to be a very demanding process in terms of computational resources, because
it involves an optimization problem. In other cases, it is necessary to solve a partial

2where D= x(O)e R‘/Iim x@ =0

e
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differential equation (see {13] and the references included in this paper). For this
reason, we believe that the detection of D is beyond the scope of this work.
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Fig. 2. Parameter a

4 Numerical Simulations

Simulations were carried out to evaluate the efficiency of the proposed feedback con-
troller for three experiments. The experiments were implemented in Mathematica by

means of a traditionally Runge-Kutta algorithm; the step size of the method was cho-
sen 1o be equal to 0.001.

In the first experiment, we used the proposed controller (5), when it was applied to the
nonlinear model (1). The design parameters were as

K, = lO,kp =0.499,k, =1.272 and ® =-0.1 and the initial conditions were
setas 0(0)=1.45,0 0)=0.2 ,q(0)=10.5 and ¢(0)=0. Figures 2 and 3 show the

closed loop responses of the feedback equivalent system.

In the second experiment, we considered the design parameters and the initial condi-
tions as before, but introduced a dissipative force in the unactuated direction, i.e. we

add the damping -Y8 into the first differential equation of the model (1), with
Y =0.3 Figures 4 and 5 show the robustness of the proposed nonlinear control when
damping is considered in the numerical simulations. Notice that it is not generally true

that damping makes a feedback-stabilized equilibrium asymptotically stable. That is to
say, damping in the unactuated direction 8 —direction ends 10 enhance stability

while damping in the actuacted direction y —direction tends to destabilize (see
[14] and [15)).

Finally, we considered a swinging task to bring the pendulum from the lower resting
position x(0)= (z,0,0,0) to the upper resting position x(!) =0. To accomplish it, we
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first used the input v to produce an instability in order to pull over the pendulum

from the downward angular position. Then, when the pendulum was on the upper
angular position, input v was switched to make that unstable equilibrium point be-

came a asymptotically stable point. The switch in v was carried out by changing

parameter @ this was done taking o =-0.1when 0 € E—n 2, % 2] and a =-0.1 in
other cases. The other design parameters were set as before.
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Fig. 3. Closed-loop responces when damping is considered o
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Fig. 4. The transfer from lower resting to upper resting positions

5 Conclusions

We have presented a practical nonlinear control for the inverted perdulum cart sys-
tem. The goal of the proposed controller is to change the unstable equilibrium point
into a locally asymptotically stable equilibrium point. The advantages of the presented
controller is that it has a very large attraction domain, as we showed in the numerical
simulations. It is robust with respect to dissipative forces. Also, the controller allows
us to establish a simple strategy to bring the pendulum from the downward resting
Position towards the upward resting position, by means of a simple change of sign of
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differential equation (see [13] and the references included in this paper). For this
reason, we believe that the detection of D is beyond the scope of this work.
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first used the input v to produce an instability in order to pull over the pendulum

from the downward angular position. Then, when the pendulum was on the upper
angular position, input v was switched to make that unstable equilibrium point be-

came a asympiotically stable point. The switch in v was carried out by changing

parameter & this was done taking o = -0.1when 0 ¢ Fr2r2]and a=-0.1 in
other cases. The other design parameters were set as before.
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S Conclusions

We have presented a practical nonlinear control for the inverted perdulum cart sys-
tem. The goal of the proposed controller is to change the unstable equilibrium point
into a locally asymptotically stable equilibrium point. The advantages of the presented
controller is that it has a very large attraction domain, as we showed in the numerical
simulations. It is robust with respect to dissipative forces. Also, the controller allows
Us to establish a simple strategy to bring the pendulum from the downward resting
Position towards the upward resting position, by means of a simple change of sign of
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the suitable parameter a as we showed in the third experiment. It is quite intcrt?stir!g
to mention that the swing up motion is caused by producing an u.nstable behavior in
the lower angular position that brings the pendulum out of.lhat r.cgton..and ti}en, when
it is in the upper half, the sign of a is shifted to stabilize it assimptotically in the top
resting position. Finally, the closed-loop stability system was shown by means of a
simple linearization of it. Even when the domain of attraction of fhe closed-loop equa-
tions has not been computed in this brief article, we assert that th|§ _controller prod_uces
a large computable domain of attraction, in comparison with tradlthnally t?ased linear
control approaches whose basin attraction are very small, as mentioned in [12] and

(16).
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